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Summary

In the context of the use of Joint Regression Analysis (JRA) for cultivars
comparison, as in Pinto (2006), the environmental index is a variable
which measures the productivity per block in field experiments. Ini-
tially, randomized blocks were used, and their mean yields (classical
environmental indexes) were taken as measuring their environmental
indexes. Later on, following Patterson and Williams (1976), α - designs,
which have incomplete blocks, superseded randomized blocks. Then
the environmental indexes for each block, couldn’t be measured by the
respective mean yields, which would lead to biased estimates. This
problem was solved by the introduction of L2 environmental indexes see
Mexia et al. (1999). In that paper the authors, through the application of
a Zig-Zag algorithm, showed how to adjust simultaneously the regression
coefficients and the environmental indexes. This study presents an analysis
of a with-covariates model for the Environmental Indexes (see Searle,
1987) using the adjusted L2 environmental indexes as observations of the
dependent variable. Concerning the explicative variables, we consider a
general mean, the main effects of two qualitative factors, year and location
and as covariates the ”classical environmental indexes”. The presence of
multi-collinearity led to the use of principal components, see Judge et al.
(1988), to perform the adjustment. Our results are applied to the data of
a Wheat Plant Breeding Program in Portugal (1986-2000), kindly supplied
by the Portuguese Plant Breeding Station. The sole significant result was
for the covariate, which validates the linearity assumed in JRA.

Key words: linear models, covariates, dummy variables, multi-
collinearity, principal components, L2 environmental indexes, JRA.
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1. Introduction

This study is a follow-up of an analysis using JRA of the Portuguese
Wheat Plant Breeding Program (1986-2000) data.

JRA is (see Aastveit and Mejza, 1992) a technique for the analysis of
genotype × environment interaction. It has been widely used for cultivar
comparison and selection. For each cultivar a linear regression of yields
on environmental index is adjusted. This controlled variable measures the
productivity of the pairs (location, year).

For some years after its invention JRA was applied to networks of ex-
periments designed as randomized blocks. Following Gusmão (1985) and
(1986a) the environmental indexes for the different blocks were measured
by the respective mean yields (classical indexes). Later on, the field ex-
periments were mainly of α type designs, thus with incomplete blocks see
Patterson and Williams (1976). Then, the environmental index for each
block could not be measured by the respective mean yield. This problem
was solved by the introduction of L2 environmental indexes see Mexia et al.
(1999). The application of JRA with L2 environmental indexes consists in
the joint adjustment of two vectors: the vector of regression coefficients and
that of environmental indexes. To perform the adjustment, we minimize
the quadratic goal function

S(αC ,βC ,xb)
C∑

j=1

[
b∑

i=1

pij(yij − αj − βjxi)2], (1)

where (αj , βj) are the intercept and the slope for the regression line to
be adjusted for cultivar j, with, j = 1, ..., C, xb = [x1, x2, ..., xb]

′
is the

environmental indexes vector, pij are the weights of the jth cultivar in the
ith block, assuming the values 1 [0] when the jth cultivar is present [absent]
in the ith block and yij is the yield of the jth cultivar in the ith block if
pij = 1 and any value if pij = 0.

We point out that, in a breeding program in which in every year all
cultivars used are present in all locations, the blocks are yearly complete,
which enables us to treat their block average yields as ”classical indexes”.

Since L2 environmental indexes measure productivity, it is worthwhile
to model them in order to assess the statistical significance of years, loca-
tions and classical indexes. So, after adjusting the goal function given by
(1), an analysis of a with-covariates model (see Searle, 1987 and Scheffé,
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1959) is performed, with the adjusted L2 environmental indexes as depen-
dent variable. In our case it is reasonable to consider the ”classical indexes”
as covariates, since the observations of the dependent variable arise from the
adjustment performed by the Zig-Zag algorithm (see Mexia et al., 1999),
which uses the ”classical indexes” as a starting point. Namely, we wanted
to see if, beyond the impact of the covariates, there were systematic effects
of years and locations.

Let vijk be the kth observation of the response variable, k = 1, ...,K,
the adjusted environmental index, for the ith level of the first factor (year)
and jth level of the second factor (location). The model equation is given
by

vijk = µ + αi + βj + γzijk + eijk, (2)

where µ is the general mean, αi, i = 1, ...I, is the effect of the ith level of
the first factor, βj , j = 1, ..., J , is the effect of the jth level of the second
factor, zijk is the kth covariate observation corresponding to the ith year
and jth location, γ is the sole slope and eijk is the kth random residual error
variable corresponding to the ith year and jth location.

We will apply our results to the Portuguese Wheat Plant Breeding Pro-
gram (1986-2000) data, kindly supplied by the Portuguese Plant Breeding
Station.

2. Model

We now briefly present the statistical methods used.

2.1. The with-covariates model

Assuming there are b adjusted environmental indexes and r factor ef-
fects, in matrix notation the previous model may be written as

Vb = Uηr + Zγ + eb, (3)

where

◦ Vb is the vector of the adjusted L2 environmental indexes;
◦ U is an incidence matrix for the factor effects which will be the com-

ponents of the vector ηr;
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◦ Z is the vector of classical indexes, thus corresponding to the cova-
riates, and γ is the slope;

◦ eb is the errors vector.
Following Pinto (2006), it is assumed that, eb ∼ N(0b, σ

2Ib), i.e. that
the error vector is normal with null mean vector and covariance matrix
σ2Ib.

The matrix U has r columns, thus can be written

U = [u1, ...,ur], (4)

where u1 = 1b, since it corresponds to the first component of the vector
of parameters to be estimated, the general mean value η1 = µ. Next, we
would have the column vectors u2, ...,uI+1 associated to the I years. Since
every observation of the dependent variable corresponds to one and only
one pair (location, year), we would have

I+1∑
j=2

uj = 1b = u1, (5)

which led to the existence of multi-collinearity.
We point out that the coefficients corresponding to the year effects

η2, ...,ηI+1 have null sum, and so

ηI+1 = −
I∑

j=2

ηj , (6)

which enables us to overcome the observed multi-collinearity. To make clear
the mechanism used, let the lth adjusted environmental index correspond
to the last year, thus we would have

ul,2 = · · · = ul,I = 0; ul,I+1 = 1, (7)

so that
I+1∑
j=2

ηjul,j = ηI+1ul,I+1, (8)

and, by (6)

ηI+1ul,I+1 = −
I∑

j=2

ηjul,I+1. (9)
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We can reproduce this result eliminating the (I + 1)th column from the
matrix U and in the lth row putting

ul,2 = · · · = ul,I = −1 (10)

whenever initially we had ul,I+1 = 1.
Likewise, we may discard the last column which would be associated

with the last location and, whenever initially ul,I+J+1 = 1, taking

ul,1+(I−1)+1 = · · · = ul,1+(I−1)+(J−1) = −1. (11)

Proceeding in this way, we reduce the multi-collinearity problems and the
number of parameters to be estimated from r = I + J + 1 to r = I + J − 1.

The column matrix Z contains the ”classical environmental indexes”,
while γ is the slope.

From now on, we will consider a unique model matrix X, constituted
by the columns of matrices U and Z, whereas the coefficients vector δh =
[ηr

′
,γ]

′
, with h = r + 1. We can rewrite the model as

Vb = Xδh + eb. (12)

Even with the previous method of building the incidence matrix U ,
in the application we considered we encountered multi-collinearity prob-
lems. To carry out the adjustment, we used principal components derived
(see Judge et al., 1988, p. 865) from spectral analysis of matrix X

′
X.

Thus, with λ1, ..., λg, the non-zero, g < h, eigenvalues of matrix X
′
X,

and α1,h, ...,αg,h the corresponding eigenvectors, we will replace the model
matrix, X by

Ẋ = XK =

 ẋ1,1 · · · ẋ1,j · · · ẋ1,g
...

. . .
...

. . .
...

ẋb,1 · · · ẋb,j · · · ẋb,g

 =
[

ẋ1,b, ..., ẋg,b

]
(13)

where K = [α1,h, ...,αg,h].
It is important to point out that the columns of Ẋ contain the values of

the principal components. These will be linear combinations of the initial
controlled variables, obtained, using as coefficient vectors, the eigenvectors
of X

′
X associated with the non-zero eigenvalues.

Matrices X and Ẋ will have the same range space, which allows us to
consider the model as

Vb = Ẋγg + eb, (14)
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with rank(Ẋ) = g. We now obtain the unbiased estimator

γ̃g = (Ẋ
′
Ẋ)−1Ẋ

′
Vb, (15)

which once Vb is assumed to be normal, has normal distribution with co-
variance matrix

Cov(γ̃g) = σ2(Ẋ
′
Ẋ)−1 = σ2(K

′
X

′
XK)−1σ2diag(λ1, ..., λg)−1. (16)

The adjusted vector will be

Ṽb =
g∑

j=1

(γ̃j · ẋjb), (17)

with γ̃g = (γ̃1, ..., γ̃g). With x1,b, ...,xh,b the column vectors of matrix X
and α1,j , ..., αh,j the components of the αj,h, j = 1, ..., g, we have, by (13),

ẋj,b =
h∑

l=1

αl,jxl,b, j = 1, ..., g, (18)

which replaced in (17), gives:

Ṽb =
g∑

j=1

(γ̃j ·ẋj,b) =
g∑

j=1

(γ̃j ·
h∑

l=1

αl,jxl,b)
h∑

l=1

(
g∑

j=1

αl,j γ̃j)xl,b =
h∑

l=1

(δ̃lxl,b), (19)

with δ̃l, l = 1, ..., h, the components of the vector we wanted to estimate.
We now have the estimated vector

δ̃h = K · γ̃g, (20)

which (see Seber, 1980, p.5) will be normal, with mean vector δh = K · γg

and covariance matrix

Cov(δ̃h) = σ2C, (21)

where C = KDK
′
= [cl,j ], with D = diag(λ−1

1 , ..., λ−1
g ).

If Vb is independent from S ∼ σ2χ2
p, for testing the hypothesis

Hl,o : δl = δl,o, l = 1, ..., h (22)
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we can use the test statistics

t(δl,o) =
δ̃l − δl,o√

cl,l
S
p

, l = 1, ..., h (23)

which, when the corresponding hypothesis holds, have central t distribution
with p degrees of freedom.

In the application we are to present the components of Vb were the mean
values of samples of 4 observations. Each of these samples corresponded to
a pair (location, year). Thus, S was the sum of sums of squares of residues
for the different samples.

3. Application

The existing data corresponds to the yields observed from a set of ex-
periments integrated in a Wheat Breeding Program that was carried out
by the Portuguese Plant Breeding Station. There are cultivars that were
discarded from the plan and others that were introduced into the plan over
the years. The years in which the different locations were used are given
in Table 1. In Table 2 the rows correspond to the cultivars, while the
columns correspond to the years. The presence or absence of a cultivar in
the program in a given year is indicated by 1 [0].

Using the yields of the cultivars from the various environments (loca-
tion, year), the ”classical environmental indexes” were given by the mean
yields for each environment. We point out that each one of these ”classical
indexes” represents the contribution of the cultivars presented in the corre-
sponding environment. Using those ”classical indexes” as a starting point,
the Zig-Zag algorithm was used for adjustment of the goal function (1),
giving the adjusted vector of regression coefficients and the adjusted L2 en-
vironmental indexes vector see Pinto (2006). Both adjusted environmental
indexes and classical indexes are shown in Table 3.

We used the results in Table 3 to adjust the model presented in subsec-
tion 2.1. In order to make clear how the model was applied to the data, we
state that:

◦ the adjusted environmental indexes are the observations of the vector
of dependent variables, Vb, with b = 41;

◦ there are eleven years, I = 11 and sixteen locations, J = 16;
◦ the matrix U has r = 1 + (I − 1) + (J − 1) = 26 columns and b = 41

rows, as presented in Table 4;
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Table 1. Years and locations for the field trials.

Experiment Locations Years
1 Almeirim 1986/87
2 Évora 1986/88/89
3 Coruche 1986/87
4 Mirandela 1986/89/92
5 Comenda 1986/95/97/99
6 Fundão 1987/88/89
7 E.N.M.P. 1988/89/90/91/92
8 Lamaçais 1988
9 Beja 1988/89/90/91/95/97
10 Benavila 1990/92
11 Elvas 1990
12 Revilheira 1990/95/97/99
13 Santarém 1991
14 Abrantes 1991
15 V.F.Xira 1992/99
16 M.Alhos 2000

◦ the vector of coefficients to be estimated, ηr, has the first component,
η1 = µ, corresponding to the general mean, I − 1 = 10 components,
η2, ..., η11 corresponding to year effects, and J − 1 = 15 components,
η12, ..., η26 corresponding to location effects;

◦ Z is a vector with b = 41 components, the classical indexes presented
in Table 3;

◦ γ is the sole slope to be adjusted.
Since it is not possible to present the complete matrix U in one table,

we write it as U = [U1,U2], and present the sub-matrices in Tables 4.1 and
4.2. The first sub-matrix U1 will contain the columns corresponding to the
general mean and to years, while the sub-matrix U2 contain the columns
corresponding to the locations. The locations will be ranked according to
the indexes given in Table 1. The first column in Table 4.1 and 4.2 indicates
the pair (location, year) for the corresponding field experiment, thus the
first one was carried out in 1986 at Almeirim.

In Table 5 the adjusted coefficients are presented, as well as the t tests
for nullity. The significance level of these tests is indicated as * 5%, ** 1%
and *** 0.1%.
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Table 2. Presence and absence of cultivars during the plan.

1986 1987 1988 1989 1990 1991 1992 1995 1997 1999 2000
anza 1 1 1 1 1 1 1 1 1 1 1
lima1 1 1 1 1 1 1 0 0 0 0 0
te8401 1 0 0 0 0 0 0 0 0 0 0
flycatcher 1 1 1 0 0 0 0 0 0 0 0
te8501 1 1 1 0 0 0 0 0 0 0 0
te8502 1 1 1 0 0 0 0 0 0 0 0
te8504 1 1 1 0 0 0 0 0 0 0 0
hahn-s 1 1 0 0 0 0 0 0 0 0 0
sunbird-s 1 0 0 0 0 0 0 0 0 0 0
neelkant-s 1 0 0 0 0 0 0 0 0 0 0
miwivet-s 1 1 0 0 0 0 0 0 0 0 0
te8601 0 1 1 0 0 0 0 0 0 0 0
te8602 0 1 1 0 0 0 0 0 0 0 0
te8603 0 1 1 1 1 0 0 0 0 0 0
te8701 0 0 1 1 1 0 0 0 0 0 0
te8702 0 0 1 1 1 0 0 0 0 0 0
almansor 0 0 0 1 1 1 1 1 1 1 1
liz1 0 0 0 1 0 0 0 0 0 0 0
liz2 0 0 0 1 1 0 0 0 0 0 0
alva 0 0 0 1 0 0 0 0 0 0 0
te8801 0 0 0 1 1 0 0 0 0 0 0
te8802 0 0 0 1 1 1 0 0 0 0 0
te8901 0 0 0 0 1 1 0 0 0 0 0
te8902 0 0 0 0 1 1 0 0 0 0 0
te9001 0 0 0 0 0 1 0 0 0 0 0
te9002 0 0 0 0 0 1 1 0 0 0 0
milan 0 0 0 0 0 1 0 0 0 0 0
te9003 0 0 0 0 0 1 0 0 0 0 0
te8906 0 0 0 0 0 1 0 0 0 0 0
mondego 0 0 0 0 0 0 1 0 0 0 0
te9101 0 0 0 0 0 0 1 0 0 0 0
te9102 0 0 0 0 0 0 1 0 0 0 0
te9111 0 0 0 0 0 0 1 1 0 0 0
te9112 0 0 0 0 0 0 1 1 0 0 0
te9113 0 0 0 0 0 0 1 1 1 0 0
te9114 0 0 0 0 0 0 1 1 1 0 0
te9203 0 0 0 0 0 0 0 1 1 1 1
te9301 0 0 0 0 0 0 0 1 1 0 0
te9302 0 0 0 0 0 0 0 1 1 0 0
te9303 0 0 0 0 0 0 0 1 1 0 0
te9406 0 0 0 0 0 0 0 1 1 1 1
te9503 0 0 0 0 0 0 0 0 1 1 1
te9504 0 0 0 0 0 0 0 0 1 1 1
te9712 0 0 0 0 0 0 0 0 0 1 1
te9713 0 0 0 0 0 0 0 0 0 1 1
te9714 0 0 0 0 0 0 0 0 0 1 1
te9715 0 0 0 0 0 0 0 0 0 1 1
te9716 0 0 0 0 0 0 0 0 0 1 1
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Table 3. ”Classical” and L2 estimated environmental Indexes per year and location.

Trial L2 Indexes Classical Indexes

1986, Almeirim 1.853 1.860

1986, Évora 0.699 0.708
1986, Coruche 5.477 5.462
1986, Mirandela 6.234 6.222
1986, Comenda 4.183 4.148
1987, Almeirim 4.843 4.826
1987, Coruche 4.248 4.185
1987, Fundão 3.970 4.190

1988, Évora 1.584 1.592
1988, Fundão 4.441 4.463
1988, ENMP 3.367 3.380
1988, Lamaçais 2.720 2.714
1988, Beja 3.448 3.464

1989, Évora 2.920 2.948
1989, Mirandela 6,025 6.037
1989, Fundão 2.491 2.514
1989, E.N.M.P. 4.154 4.210
1989, Beja 4.300 4.362
1990, E.N.M.P. 2.386 2.366
1990, Beja 2.558 2.550
1990, Benavila 0.945 0.947
1990, Elvas 0.311 0.311
1990, Revilheira 0.351 0.358
1991, E.N.M.P. 4.680 4.674
1991, Beja 3.509 3.512
1991, Santarém 1.837 1.838
1991, Abrantes 2.147 2.158
1992, Mirandela 3.271 3.311
1992, E.N.M.P. 1.783 1.770
1992, Benavila 2.410 2.401
1992, V.F.Xira 4.816 4.789
1995, Comenda 1.859 1.848
1995, Beja 2.112 2.115
1995, Revilheira 1.665 1.661
1997, Comenda 3.314 3.306
1997, Beja 2.823 2.839
1997, Revilheira 1.160 1.166
1999, Comenda 3.828 3.816
1999, Revilheira 3.054 3.066
1999, V.F.Xira 5.271 5.285
2000, M.Alhos 1.542 1.204
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Table 4.1. Sub-Matrix U1.

intercept 1986 1987 1988 1989 1990 1991 1992 1995 1997 1999

1986, Almeirim 1 1 0 0 0 0 0 0 0 0 0

1986, Évora 1 1 0 0 0 0 0 0 0 0 0
1986, Coruche 1 1 0 0 0 0 0 0 0 0 0
1986, Mirandela 1 1 0 0 0 0 0 0 0 0 0
1986, Comenda 1 1 0 0 0 0 0 0 0 0 0
1987, Almeirim 1 0 1 0 0 0 0 0 0 0 0
1987, Coruche 1 0 1 0 0 0 0 0 0 0 0
1987, Fundão 1 0 1 0 0 0 0 0 0 0 0

1988, Évora 1 0 0 1 0 0 0 0 0 0 0
1988, Fundão 1 0 0 1 0 0 0 0 0 0 0
1988, ENMP 1 0 0 1 0 0 0 0 0 0 0
1988, Lamaais 1 0 0 1 0 0 0 0 0 0 0
1988, Beja 1 0 0 1 0 0 0 0 0 0 0

1989, Évora 1 0 0 0 1 0 0 0 0 0 0
1989, Mirandela 1 0 0 0 1 0 0 0 0 0 0
1989, Fundão 1 0 0 0 1 0 0 0 0 0 0
1989, E.N.M.P. 1 0 0 0 1 0 0 0 0 0 0
1989, Beja 1 0 0 0 1 0 0 0 0 0 0
1990, E.N.M.P. 1 0 0 0 0 1 0 0 0 0 0
1990, Beja 1 0 0 0 0 1 0 0 0 0 0
1990, Benavila 1 0 0 0 0 1 0 0 0 0 0
1990, Elvas 1 0 0 0 0 1 0 0 0 0 0
1990, Revilheira 1 0 0 0 0 1 0 0 0 0 0
1991, E.N.M.P. 1 0 0 0 0 0 1 0 0 0 0
1991, Beja 1 0 0 0 0 0 1 0 0 0 0
1991, Santarém 1 0 0 0 0 0 1 0 0 0 0
1991, Abrantes 1 0 0 0 0 0 1 0 0 0 0
1992, Mirandela 1 0 0 0 0 0 0 1 0 0 0
1992, E.N.M.P. 1 0 0 0 0 0 0 1 0 0 0
1992, Benavila 1 0 0 0 0 0 0 1 0 0 0
1992, V.F.Xira 1 0 0 0 0 0 0 1 0 0 0
1995, Comenda 1 0 0 0 0 0 0 0 1 0 0
1995, Beja 1 0 0 0 0 0 0 0 1 0 0
1995, Revilheira 1 0 0 0 0 0 0 0 1 0 0
1997, Comenda 1 0 0 0 0 0 0 0 0 1 0
1997, Beja 1 0 0 0 0 0 0 0 0 1 0
1997, Revilheira 1 0 0 0 0 0 0 0 0 1 0
1999, Comenda 1 0 0 0 0 0 0 0 0 0 1
1999, Revilheira 1 0 0 0 0 0 0 0 0 0 1
1999, V.F.Xira 1 0 0 0 0 0 0 0 0 0 1
2000, M.Alhos 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
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Table 4.2. Sub-Matrix U2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1986, Almeirim 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1986, Évora 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1986, Coruche 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1986, Mirandela 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1986, Comenda 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1987, Almeirim 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1987, Coruche 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1987, Fundão 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1988, Évora 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1988, Fundão 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1988, ENMP 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1988, Lamaçais 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1988, Beja 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1989, Évora 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1989, Mirandela 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1989, Fundão 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1989, E.N.M.P. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1989, Beja 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1990, E.N.M.P. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1990, Beja 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1990, Benavila 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1990, Elvas 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1990, Revilheira 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1991, E.N.M.P. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1991, Beja 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1991, Santarém 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1991, Abrantes 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1992, Mirandela 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1992, E.N.M.P. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1992, Benavila 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1992, V.F.Xira 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1995, Comenda 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1995, Beja 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1995, Revilheira 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1997, Comenda 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1997, Beja 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1997, Revilheira 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1999, Comenda 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1999, Revilheira 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1999, V.F.Xira 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2000, M.Alhos -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
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Table 5. Adjusted Coefficients and t-tests.

Variables Adjusted Coefficients t-tests
intercept 0.0153 0.1336
1986 -0.0265 -0.2990
1987 -0.0766 -0.5704
1988 0.0064 0.0722
1989 -0.0120 -0.2315
1990 0.0062 0.0625
1991 0.0137 0.1173
1992 -0.0007 -0.0066
1995 0.0001 0.0011
1997 -0.0092 -0.0938
1999 -0.0217 -0.2060
2000 0.1282 0,8680
Almeirim 0.0389 0.2884
Évora -0.0180 -0.1493
Coruche 0.0718 0.5084
Mirandela -0.0168 -0.1232
Comenda 0.0132 0.1318
Fundão -0.0763 -0.7408
E.N.M.P. -0.0250 -0.3181
Lamaçais -0.0175 -0.1036
Beja -0.0359 -0.4824
Benavila -0.0156 -0.1278
Elvas -0.0216 -0.1245
Revilheira -0.0156 -0.1566
Santarém -0.0317 -0.1643
Abrantes -0.0419 -0.2227
V.F. Xira -0.0015 -0.0090
M.Alhos 0.1935 1,0930
Covariate 1.0008 24.5501***

4. Conclusions

The only significant result was for the covariate, so there is no additional
influence from either years or locations. This point is important since
it shows the basic linearity of the problem. Thus if the linear structure
assumed did not completely describe what happens, the residues would
show departures from linearity. These departures would very probably be
connected with years and locations. Thus this study provides an additional
validation of the basic JRA model.
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